2021

COMPUTER SCIENCE - GENERAL

First Paper

Full Marks : 100
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
Answer question no. 1 and any five questions from the rest, taking at least one from each Group.

1. Answer any ten questions:
(a) Differentiate between compilers and interpreters.
(b) Differentiate between assembly level language and high level language.
(c) Using Boolean Algebra prove $x^{\prime} y+x z+y z=x^{\prime} y+x z$.
(d) Differentiate between SRAM and DRAM.
(e) Find the value of $35-76$ using 2's complement technique. Show the steps.
(f) What is the difference between latch and flip-flop?
(g) Convert $(672 \cdot 483)_{8}$ to binary.
(h) Write two differences between synchronous counter and asynchronous counter.
(i) Define fan_in and fan_out.
(j) Write two differences between memory mapped I/O and I/O mapped I/O.
(k) How you identify memory reference instruction and I/O reference instruction?
(1) State the advantage of one address instruction over two address instruction.
(m) Define : context switch.
(n) Mention two advantages of demand paging.
(o) What is spooling?

Group-A

(General Concepts)
2. (a) Explain the use of primary and secondary memories of a computer.
(b) What are the features of application software? Give example.
(c) Write different features of OOPS.
(d) Write short notes on computer virus.
(e) Differentiate between 3GL and 4GL.
3. (a) What is relocating loader? What are its advantages over absolute loader?
(b) Write the characteristics of Von-Neumann Architecture machine.
(c) What is the function of cache memory? Briefly discuss a technique of accessing cache memory.
(d) Write the name of various phases of a compiler.

Group-B

[Digital Logic Design]

4. (a) Design a J-K flip-flop using NAND gates only.
(b) Simplify using K-map

$$
f=\sum(1,3,4,8,11,14)+\sum_{d}(0,5,13,15)
$$

(c) Design a 8×1 MUX by using two 4×1 multiplexers.
5. (a) Design a Full Adder using two half adders and an OR gate.
(b) Implement BCD to Excess-3 code converter.
(c) Explain JK flip-flop with a diagram.

Group-C

[Computer Architecture and Organisation]
6. (a) Briefly describe how a DMA data transfer is performed in a computer system with suitable block diagram.
(b) What is the importance of Program status word?
(c) Explain the function of program counter and stack pointer.
(d) Give examples of two-address and three address instructions.
7. (a) Define Addressing Mode. Write short notes on :
(i) Index Addressing Mode
(ii) Register Addressing Mode.
(b) Compare and contrast CISC and RISC architecture.
(c) Write a program to evaluate the arithmetic statement: $\mathrm{E}=\mathrm{A}-\mathrm{B}+\mathrm{C} *(\mathrm{D}-\mathrm{E}) /(\mathrm{F}+\mathrm{G})$ using a general register computer with three address instructions.
$6+4+6$

Group-D

[Operating System]
8. (a) Define deadlock. What are the necessary conditions for a deadlock to occur?
(b) Consider the following reference string:
$1,3,2,7,2,1,4,6,2,4,2,6,7,8,3,2,4,2,3,6$. How many page faults will occur for 4 page frames for each of the following algorithms?
(i) Optimal page replacement
(ii) LRV.
(c) Consider the following processes with burst time in milliseconds

Process	CPU Burst Time (ms)
P_{1}	15
P_{2}	5
P_{3}	7
P_{4}	10

Draw the Gantt chart for Round Robin scheduling where time quantum $q=5 \mathrm{~ms}$. Calculate average waiting time.
9. (a) What is semaphore? Briefly explain the role of semaphore in critical section problem.
(b) Differentiate between process and program. Discuss briefly about different process states with a suitable process state diagram.
(c) What is virtual memory and discuss the advantages of using it.

