2021

COMPUTER SCIENCE - GENERAL

Paper : DSE-A-2

(Operation Research)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 in Section-I and any four from Section-II.

Section - I

1. Answer any five questions:
(a) What is Slack-variable?
(b) What is Surplus-variable?
(c) What are the conditions of having feasible solutions of set of linear equations?
(d) What do you mean by Basic Feasible Solution of equations?
(e) Define degeneracy in LP-Problems.
(f) Distinguish between separable programming and non-separable programming.
(g) Write short note on Buffer Stock.
(h) What do you mean by Optimal run time of a LPP?
(i) Define unbalanced transportation problem.
(j) State Bellman's Principle of Optimality.

Section - II

2. Find the initial Basic Feasible solution of the following transportation problem by VAM method.

Factroy	Warehouses				Available
	W1	W2	W3	W4	
F1	19	30	50	10	7
F2	70	30	40	60	9
F3	40	8	70	20	18
Requirement	5	8	7	14	34

3. A toy manufacturer uses 48,000 rubber wheels per year for its popular dump truck series. The firm makes its own wheels, which it can produce at a rate of 800 per day. The toy trucks are assembled uniformly over the entire year. Carrying cost is 10 per wheel a year. Set up cost for a production run of wheels in 450 . The firm operates 240 days per year.

Determine each of the following :
(a) Optimal run size
(b) Minimum total annual cost for carrying and set up
(c) Cycle time for the optimal run size
(d) Run time.
4. A manufacturer of toys makes two types of toys, A and B. Processing of these two toys is done on two machines X and Y . The toy A requires two hours on machine X and six hours on machine Y . Toy B requires four hours on machine X and five hours on machine Y. There are sixteen hours of time per day available on machine X and thirty hours on machine Y . The profit obtained on both the toys is the same, i.e., 5 per toy. Formulate this problem as an integer LP problem.
5. Solve the following problem by Simplex method.

$$
\begin{aligned}
& \text { Maximized } Z=10 x_{1}-4 x_{2} \\
& \text { Subject to: } \\
& \begin{aligned}
2 x_{1}-6 x_{2} & \leq 0 \\
-x_{1}+2 x_{2} & \geq-2 \\
-3 x_{1}-3 x_{2} & \geq 24 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
\end{aligned}
$$

6. Find the optimum strategies for A and B and the value of the game.

B						2	4
A	1	7	7	8			
	0	3	6	10			
	5	2	2				

7. Suggest optimum assignment of 4 workers A, B, C and D to 4 jobs I, II, III and IV. The time taken (hours) by different workers in completing the different jobs is given below :

	JOBS					
		I	II	III	IV	
	A	8	10	12	16	
	B	11	11	15	8	
	C	9	6	5	14	
	D	15	14	9	7	

8. Write short notes on any two of the the following :
(a) Saddle Point in Game Theory
(b) Sensitivity analysis in LP Problems
(c) Non-linear Programming
(d) Branch and Bound Approach.
