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MATHEMATICS — GENERAL

First Paper
Full Marks : 100

Candidates are required to give their answers in their own words
as far as practicable.
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[English Version]

The figures in the margin indicate full marks.

Module — 1
Group — A
(Marks : 20)

Answer question no. 1 and any three questions from the rest.

1. (a) Answer any one question : 2x1
0 -2021 -o
(i) Without expanding prove that | 2021 0 B |=0.
a -B 0

(i) On the complex plane, let P(z) be a variable point such that | z + 3i | = 4. Find the locus of P.
(iii) Find the equation whose roots are —1, 2, —3 and 3.
(b) Answer any one question : 3x1
(i) Solve x> = 1, by using De Moivre’s Theorem.

(i) Find the equation of fourth degree with rational coefficients, one root of which is /3 +/2 ;.

. 12 2
(i) Is the matrix —=| 2 1 -2 orthogonal?

-2 2 1
2. If sin_l(u +iv)=a+ib, then prove that 1+ u? +v? =sin a+cosh’b. 5
3. Solve by Cardan’s method : x3 — 24x + 72 = 0. 5
4. Ifa, B,y and 3 are the roots of the equation x* — 3x3 +2x% — 7x + 5 = 0, find the equation whose roots
area+1,p+1,y+1 and 5+ 1. 5
5. Solve by Cramer’s Rule 5

3x-2y+ z =-1
—x+ y+7z = 1
4x-3y—-2z =-2

6 12
6. Find the rank of the matrix 4, where 4={ -1 -2 3. 5

5 10
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Group — B
(Marks : 15)

Answer question no. 7 and any two questions from the rest.

7. Answer any one question : 3x1
(a) Find the value of k, for which x2 + y2 + 2x + k = 0 represents a pair of straight lines.
(b) Determine the nature of the conic S 2+4cos0 and also find the length of its latus rectum.
r
(c) Show that the polar of the point (— 1, 5) with respect to the parabola y? = 4x passes through
the focus.
8. Reduce the equation 6x2 — 5xy — 62 + 14x — 5y + 4 = 0 to its canonical form and hence determine the
nature of the conic. 6
9. Find the distance from the origin of the point of intersection of the straight lines given by
2x2 — 5xy + 3y — 2x + 3y = 0. 6
10. Show that if L A cosO+ Bsin0 touches L 1+ecosh, then (4—e)® +B%=1. 6
r r
11. The polar of the point P with respect to the circle x2 + y2 = a? touches the circle 4x2 + 42 = a2, Show
that the locus of P is x2 + y% = 4a2. 6
Group — C
(Marks : 15)
Answer question no. 12 and any two questions from the rest.
12. Answer any one question : 3x1
(a) Find the value of x for which the vectors xi —4}'+5/€, i +2}+/€ and 2i —}+1€ are coplanar.
(b) If 6 and B are two vectors such that |G |=23, E‘zll and‘&+[§‘=20, ﬁnd‘&—ﬁ‘.
(c) Find an unit vector perpendicular to 2 - 3} +4k and 37 — 2}' +2k .
13. (a) Prove by vector method that the diagonals of a rhombus are perpendicular to each other.
(b) Prove that, for any proper vector @, i x (5[ X ;) +}>< (Fz X }) +k x (E X Ig) =24 . 4+2
14. (a) A particle acted on by constant forces 2;—3}+l€ and 35+}+2I€ is displaced from the point

i —2}‘ +3k to the point 4i +5]A' +7k . Find the amount of work done.

(b) Determine the value of a so that d =(2,a,1) and b= (4,-2,-2) are perpendicular. 4+2

Please Turn Over



[T (I)-Mathematics—G—I] (8)

15.

Prove that the three points whose position vectors are 7 + 2}' +3l€, —i —} +8k and —4i + 4}'+ 6k form

an equilateral triangle. 6

16. If @, f, § are three vectors such that G +f+7 =0 and la|=2, ﬁ‘:4,|?|=6, then show that
a-P+p-y+7-d=-28. 6
Module — 2
Group — A
(Marks : 25)
17. (a) Answer any one question : 2x1
(i) Find the range of the real-valued function of a real variable, f(x)= m+ 2.
X
(i) Show that the sequence {x,}, where x, = in +1 (n>1), is monotonically decreasing.
n+
(b) Answer any one question : 3x1
3kx+5 )
(i) A function f'(x) defined by f(x)=3 x—-2 ° Y72 For what value(s) of &, f(x) is continuous?
47 , x=2

2 . .
(i) Let f(x)= {x , When x is rational

0 , when x is irrational

Show that f’(0) = 0.

18. Answer any two questions :

. i . I+2 1+2+3 1+2+3+4
(a) (1) Examine the convergence of the series : 53 + 33 + B +

(i) Find %, if (cosx)” = (sin y)*.
X

(i) ¥ = 2cosx(sinx — cosx). Show that (y,) =2'". 5+3+2

(b) (i) Find the maxima and minima of 1+ 2sinx + 3cos’ x(O <x< gj .

2 2
(i) Find the pedal equation of the ellipse X 42 1 with respect to centre. 10

a’ b2
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20.
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(c) (i) Find the asymptote of the curve x3 + 3x2y — 43 —x +y +3 =10.
(i) Prove that the radii of curvature P, and p, at the extremeties of a focal chord of a parabola
whose semi-latus rectum is /, then (p1 )23 +(p, )2 =y, 5+5
(d) () Ifx=sin0 and y = sink 0, prove that
(D) (l—xz)y2 =Xy, +k2y=0
() (1=27) 3,5 = @nt Dy, + (K =n? ), =0
(i) Use Cauchy’s criterion to show that the sequence (xn) converges, when
1 1 1
=l+—+— — +3)+
X, 1+2!+3!+...+n'. (2+3)+5
Group — B
(Marks : 10)
Answer any one question : 2x1
(a) Show that If(a+b—t)dt :If(x)dx .
2n
(b) Find j | sinx |dx .
0
Answer any two questions : 4x2

b

(a) Evaluate Iexdx from definition.

(b) Show that lim

(c) Evaluate

(d) Evaluate I

a

1

i {(1+2)(152). 12) -2

cot™ 1 X+x )dx.

o |

© Ly —

dx
5—13sinx
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21.

22.

Group — C
(Marks : 15)

Answer any one question : 3x1

(a) Find the differential equation of all straight lines passing through the origin.

d’y dyY’
(b) State the order and degree of —2=4 v+ = .

dx dx
Answer any three questions : 4x3
(a) Solve (1+x2)d—y+y —tan"x.
dx
(b) Obtain the general and singular solution of py = pz(x—b) +a, where p= j—y and a, b constants.
X

(c) Solve (xzy2 +xy+1)y a’x+(x2y2 —xy+1)xdy=0.

2 2
LY

(d) Obtain the orthogonal trajectories of the family of curve 3 3
a“+h b +A

=1, where A is the arbitrary

parameter and a and b are given constants.

2 2
(e) Solve [yzexy +4x3)dx+[2xyexy —3y2)dy:0.




